SMC比例伺服閥在磁場的作用下能產生大得多的長度或體積變化
SMC比例伺服閥研制領域的新型材料運用,主要是以壓電元件、超磁致伸縮材料及形狀記憶合金等為基礎的轉換器研制開發。它們各具有其自己的優良特性。
SMC比例伺服閥在一定的電場作用下會產生外形尺寸的變化,在一定范圍內,形變與電場強度成正比。壓電元件的主要材料為壓電陶瓷(SMC比例伺服閥的疊堆型壓電伸縮陶瓷等。SMC比例伺服閥的原理是:在閥芯兩端通過鋼球分別與兩塊多層壓電元件相連。通過壓電效應使壓電材料產生伸縮驅動閥芯移動。實現電-機械轉換。PMN噴嘴擋板式伺服閥則在噴嘴處設置一與壓電疊堆固定連接的擋板,由壓電疊堆的伸、縮實現擋板與噴嘴間的間隙增減,使閥芯兩端產生壓差推動閥芯移動。目前壓電式電-機械轉換器的研制比較成熟并已得到較廣泛的應用。它具有頻率響應快的特點,伺服閥頻寬甚至能達到上千赫茲,但亦有滯環大、易漂移等缺點,制約了壓電元件在電液伺服閥上的進一步應用。
SMC比例伺服閥在磁場的作用下能產生大得多的長度或體積變化。利用GMM轉換器研制的直動型伺服閥是把 GMM轉換器與閥芯相連,通過控制驅動線圈的電流,驅動GMM的伸縮,帶動閥芯產生位移從而控制伺服閥輸出流量。該閥與傳統伺服閥相比不僅有頻率響應高的特點,而且具有精度高、結構緊湊的優點。目前,在SMC比例伺服閥和內燃機燃料噴射系統的高速強力電磁閥,進行了結構設計和特性研究。從目前情況來看GMM材料與壓電材料和傳統磁致伸縮材料相比,具有應變大、能量密度高、響應速度快、輸出力大等特點。世界各國對GMM電-機械轉換器及相關的技術研究相當重視,GMM技術水平快速發展,已由實驗室研制階段逐步進入市場開發階段。今后還需解決GMM的熱變形、磁晶各向異性、材料腐蝕性及制造工藝、參數匹配等方面的問題以利于在高科技領域得到廣泛運用。
SMC比例伺服閥將其在高溫下定型后,冷卻到低溫狀態,對其施加外力。一般金屬在超過其彈性變形后會發生*變形,而SMA卻在將其加熱到某一溫度之上后,會恢復其原來高溫下的形狀。利用其特性研制的伺服閥是在閥芯兩端加一組由形狀記憶合金繞制的SMA執行器,通過加熱和冷卻的方法來驅動SMA執行器,使閥芯兩端的形狀記憶合金伸長或收縮,驅動閥芯作用移動,同時加入位置反饋來提高伺服閥的控制。從該閥的情況來看,SMA雖變形量大,但其響應速度較慢,且變形不連續,也限制了其應用范圍。
SMC比例伺服閥技術上的運用主要有兩種方式:其一,在SMC比例伺服閥模擬控制元器件上加入D/A轉換裝置來實現其數字控制。隨著微電子技術的發展,可把控制元器件安裝在閥體內部,通過計算機程序來控制閥的,實現數字化補償等功能。但存在模擬電路容易產生零漂、溫漂,需加D/A 轉換接口等問題。其二,為直動式數字控制閥。通過用步進電機驅動閥芯,將輸入信號轉化成電機的步進信號來控制SMC比例伺服閥的流量輸出。該閥具有結構緊湊、速度及位置開環可控及可直接數字控制等優點,被廣泛使用。
但在實時性控制要求較高的場合,如按常規的步進方法,無法兼顧量化精度及響應速度的要求。浙江工業大學采用了連續跟蹤控制的辦法,消除了兩者之間的矛盾,獲得了良好的動態特性。此外還有通過直流力矩電機直接驅動閥芯來實現數字控制等多種控制方式或SMC比例伺服閥結構改變等方法來形成眾多的數字化伺服
SMC比例伺服閥在磁場的作用下能產生大得多的長度或體積變化
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,儀表網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。